
Vulnerability
Management
and DevSecOps
with CI/CD

2Vulnerability Management and DevSecOps with CI/CD

Many of the world’s highest performing

software development teams have adopted

DevOps practices. And while DevOps has

simplified software builds, testing, and

deployment, it fails to address a vital issue:

security and vulnerability management.

Vulnerabilities can occur at many points in the

DevOps pipeline. Developers might accidentally

write insecure code. An application may

use a library containing a security bug. Even

containerized applications can contain

vulnerabilities in the operating system running

inside the container.

With companies large and small continuing to

invest heavily in DevOps and containerization,

vulnerability management requires new

approaches. Developers can’t just rely on

operations teams to patch servers to the latest

updates. Instead, development teams must

include security in their workflow.

In this ebook we will discuss how modern

developers and DevOps practitioners can use

CI/CD to adopt a DevSecOps approach to

vulnerability management.

3Vulnerability Management and DevSecOps with CI/CD

More
power, more
responsibility

Developers have many useful automation tools at their disposal,

but these tools can add potential security vulnerabilities when

used carelessly. Our code, packages, pipelines, and container

images are all sources of value and also all sources of

vulnerabilities.

Hackers and security researchers continually discover

vulnerabilities in software, libraries, operating systems, and

infrastructure. Vulnerability management is the ongoing process

of scanning, classifying, prioritizing, and patching software

vulnerabilities. A DevSecOps approach can help by automating all

of these areas.

Next to vulnerabilities in software and hardware, companies

may have unknown vulnerabilities in their internal processes,

for example, when hiring new people and managing access to

resources. Security policies should also address and minimize

these vulnerabilities.

DevSecOps can help address all these issues by having clear,

documented, and — most importantly — automated processes in

place.

4Vulnerability Management and DevSecOps with CI/CD

Code vulnerabilities
Developers often rely on other people’s code. Most software

projects start out with importing packages using a package

manager. This code can be open source or proprietary, and it often

relies on additional packages. Especially when writing JavaScript

and using npm, it’s packages all the way down.

These external dependencies are not without risk. Packages may

contain incorrect or malicious code. Companies often release

new versions of their software and packages that include new

security updates, but those updated packages may introduce new

vulnerabilities (or bugs).

That said, your software may contain its own vulnerabilities as

well. It might be because you made a quick fix — we all do that

from time to time — or because you overlooked something. It may

simply be because your older code no longer follows today's best

security practices.

CI/CD pipelines
DevOps practices aim to automate as much work as possible to

save time and minimize human error. Central to this automation

are CI/CD pipelines. Pipelines automatically trigger builds, run

tests, and deploy software, either in the cloud or on your private

server.

While CI/CD pipelines are key to successfully implementing

DevOps, they also come with potential security threats.

Unauthorized access to the pipeline can put your company at

risk. As we’ll see, CI/CD pipelines can play an important role in

vulnerability management — but we must first ensure they are

secure.

CI/CD pipelines may contain sensitive information, like usernames

and passwords, for things such as an automated database release

or an application that needs to connect to a database. Security

management must be implemented correctly, or your developers

will have direct access to production databases that contain

sensitive data.

When a developer leaves the company or team, not only would you

have to disable access to the pipeline, but you’d have to refresh

all your passwords as well in case they wrote them down or

remember them.

5Vulnerability Management and DevSecOps with CI/CD

Secret management can be partly automated, such as by

generating secure passwords for automatically rolled out services.

Make sure you always use a secret manager like AWS Parameter

Store, Azure Key Vault, or HashiCorp’s Vault to manage your

secrets and secret access.

Containerization
Containerization with tools like Docker and Kubernetes can be

a useful tool for developers. It provides more control over their

application’s runtime environment. Containers ensure that all the

dependencies and secrets the application needs are available.

Testing becomes more straightforward because the testing

environment is identical to production.

But containerization also introduces a new challenge:

development teams must now worry about vulnerabilities in their

container images, not just in the libraries they use. Vulnerabilities

may exist because images or the software they run are outdated.

Or perhaps your images themselves are safe, but the configuration

isn’t. We need a new vulnerability management approach that

keeps up with modern DevOps practices.

Also, working with containers does not mean you do not have to

worry about servers. Containers still run on hardware and may run

other software alongside containers. You could leave both private

and cloud-hosted servers unprotected by using poor passwords or

unintentionally leaving ports open.

6Vulnerability Management and DevSecOps with CI/CD

Up and running
with DevSecOps

Automated builds, tests, and deployments with CI/CD pipelines

are familiar to teams implementing DevOps. But how can we

incorporate vulnerability management seamlessly into the DevOps

processes?

The answer is DevSecOps.

DevSecOps focuses on making security an integral part of an

organization’s DevOps processes. According to the 2019 State
of DevOps Reports by Puppet, CircleCI, and Splunk, teams

implementing DevOps are already more secure on average than

teams without these practices. However, with DevSecOps, security

becomes an explicit and integral part of your DevOps workflow.

The goal is to make everyone responsible for security.

DevOps has a focus on bringing teams together to encourage

collaboration and shared responsibility. Before DevOps, multiple

teams were often responsible for deploying software, with

separate scopes of responsibility. Developers built the software,

testers tested the software, and system administrators would

deploy it on a server.

In some cases, the software would be tested for security

vulnerabilities by yet another team, often in the final release

stages. Sometimes, these teams would never even meet or talk to

https://www2.circleci.com/2019-state-of-devops-report.html
https://www2.circleci.com/2019-state-of-devops-report.html

7Vulnerability Management and DevSecOps with CI/CD

each other. They were often located in other buildings or even in

different countries — security as a black-box exercise.

This wasn’t much of an issue when software release cycles lasted

months or years, but teams practicing DevOps sometimes release

software multiple times a day. Outdated security practices can

undo many great DevOps practices and greatly delay software

releases.

DevOps encourages the development, testing, and operation

teams to work together, often in multi-disciplinary teams. This

approach ensures that the team that writes an application also

knows how to build, test, deploy, and monitor it.

with their application and its needs. Think of your security

team as an enablement team which sets up the rest of the

organization to build, test, and deploy faster and without worry.

In this arrangement, each development team handles package

management, secret management, and container image

vulnerability management for their own application.

How can you implement DevSecOps in your organization across

your development teams?

You can’t have DevSecOps without the DevOps, so that’s a

prerequisite. Teams should be working together, and software

builds and deployments must be automated. If you’re not

practicing DevOps yet, the road to implementing DevSecOps starts

with adopting DevOps practices.

If you are practicing DevOps, you probably already have CI/

CD pipelines in place, which is a great start. The next steps to

DevSecOps may involve creating an inventory of your software

assets (you can’t secure what you don’t know about), making sure

you know who is responsible for those assets, as well as making

some changes to your CI/CD pipelines to make sure they're

scanning for issues.

If you’re interested in learning more about

bringing DevOps to your team, read our other

ebooks Leading Your Team to DevOps Maturity and

Software Testing for DevOps-Driven Teams

By involving the security team in DevOps (thus forming

DevSecOps), security concerns are addressed at every stage

across the software life cycle by the people most familiar

https://circleci.com/resources/devops-maturity-ebook/
https://circleci.com/resources/software-testing-devops-teams/
https://circleci.com/resources/software-testing-devops-teams/

8Vulnerability Management and DevSecOps with CI/CD

Preparation for
DevSecOps

First, determine the software, pipelines, and container images your

organization is running. This includes the software your users are

using as well as packages your company maintains, tools your

developers use, and software that is currently in development.

Then, determine which teams are responsible for each. This

undertaking can be arduous, and sometimes even contentious,

but know that there are many other teams who will also want and

benefit from this scoping for their own clarity of ownership. Track

this in whatever way works best for your company. A spreadsheet,

kanban board, and tools like Airtable can all work equally well.

The result is a complete list of software, pipelines, and images

you’ll need to check for vulnerabilities, and what teams will be

responsible for fixing them.

9Vulnerability Management and DevSecOps with CI/CD

Get everyone
on board

Before opening issues or bug reports, talk to all development

teams. Ensure they understand the following:

• Why you are making these changes to adopt DevSecOps
practices.

• What will be required of them.

• How it will enable them to do their jobs better.

• Nobody is being singled out. All development teams are
now responsible for patching and updating their source,
pipelines, and container images.

One thing to watch out for is ensuring that teams get the

resources they need to make these changes. Writing software is

often a struggle between wanting to write stable and maintainable

code and wanting to ship new features as soon as possible.

Simply dropping vulnerability management on your developers’

plate isn’t going to work. Ensure your teams get the time and

resources necessary to make those changes now and keep

maintaining them in the future.

Adding security as part of your DevOps process is like developing

any new feature: it has to be planned, developed, and tested

and takes time. It’s not some switch you can turn on or off. Like

DevOps, DevSecOps must be a company-wide effort in order to

succeed.

10Vulnerability Management and DevSecOps with CI/CD

Use your
CI/CD pipeline

If you’re already working with CI/CD pipelines as part of your

DevOps process, make sure these pipelines are secure.

You should look for passwords stored as plain text as part of

some script or setting. This happens more often than you’d think.

Pipelines often allow for parameters to be secrets instead. You

can set secrets, but secret values will not show in either the

designer view or logs afterward.

If possible, use a secret manager instead. They allow you to

store secrets in a single, safe place while still sharing secrets

with various applications. Authorized people, like managers,

administrators, and lead developers, can access the secret

manager. However, others on the team cannot access the secret

manager or its secrets.

11Vulnerability Management and DevSecOps with CI/CD

Add scanning to your pipeline
Once your CI/CD pipeline is secure, consider adding scanners

for various types of vulnerabilities. By adding scanners to your

existing CI/CD pipeline, developers get valuable vulnerability

feedback from the tools they’re already using. This is a far more

effective approach than emails, meetings, and reports, as those

provide distractions, while the pipelines are already part of the

daily job. By using scanners, you can automate repetitive and

error-prone work for the security team.

You can add scanners like:

• Alcide, which scans Kubernetes clusters for
vulnerabilities.

• Snyk, which enables developers to continuously find and
fix vulnerabilities in open source libraries and containers.

• Stackhawk to scan code for bugs.

With these types of scanners, developers will be notified when

their code contains security vulnerabilities. When a vulnerability

is severe, a build fails, and the vulnerability will never make it to

production.

Note that you can find CircleCI orbs — reusable packages of

CircleCI configuration — for all of these scanners, enabling

immediate integration into your CI/CD pipeline. We'll explain more

about orbs later.

When working with containers, it’s wise to add a scanner for image

vulnerabilities as well. Since Docker containers are self-contained

and specify their dependencies, it’s easy to add container

vulnerability scanning to your CI/CD pipeline. There are both paid

tools and open source tools you can use. One great open-source

option is Clair.

The initial rollout
Consider an introductory period where vulnerability reports are

advisory, but not build-breaking. Your team can use this time to

fix any security issues and get used to the new security practices.

Again, make sure teams have the time to fix security issues. It will

take a few story points out of your next couple of sprints.

Development teams might be unhappy about being given

responsibility for vulnerability management. When you first

enable scanning, use it to build a comprehensive report of all

your organization’s container vulnerabilities. With this report,

https://www.alcide.io/
https://snyk.io/
https://www.stackhawk.com/
https://circleci.com/orbs/
https://github.com/arminc/clair-scanner

12Vulnerability Management and DevSecOps with CI/CD

create a plan with each affected team to fix the vulnerabilities in a

reasonable time frame while still finishing other work they need to

complete.

Once you’ve fixed the initial vulnerabilities, make the scanner

a build-breaker. If container changes introduce a vulnerability,

developers must fix it before an automated CI/CD build and deploy

can happen.

The automated vulnerability testing you’ve added to your pipeline

makes it easy to test and validate vulnerability patches. This way,

security management becomes part of the regular development

cycle instead of something you do periodically, like once a week or

a month.

Look for time-savers
Once you’ve fixed critical vulnerabilities, look for ways to reduce

security maintenance overhead.

One time-saver may be to move common code to shared

libraries. Developers often copy and paste code and multiple

teams will copy and paste the same code into different parts of

the codebase. There are scanners available that detect (near)

duplicate code, both for pipelines and code editors.

Consider moving any code highlighted by duplication checks to a

shared library that can be used by all your teams. That way, when

your scanners report a security issue on your shared code, you

will only have to patch it once. This can be especially helpful for

code accessing a database, doing calls over the internet, code that

deals with authentication and authorization, and code that directly

uses underlying OS features.

Another common practice in larger organizations is to move to

shared base images. Separate teams often choose their container

base images in isolation, without checking what other teams

are using. Teams should use shared base images as much as

possible.

When you update a shared base image in response to a discovered

vulnerability, all teams using that image will benefit immediately.

If each team were using its own image, each one would have to

be updated separately. With shared images, any build/test/deploy

cycle automatically uses the updated version of any base image it

uses.

13Vulnerability Management and DevSecOps with CI/CD

DevSecOps in
production

Once all the security practices are in place and are part of your

default development process, it’s vitally important to keep

monitoring. Code that is perfectly safe today may contain known

security vulnerabilities tomorrow. Monitor the software that’s

already running, as well as code that’s actively being developed.

You can do this with tools like Splunk or Prisma Cloud.

Generate your reports automatically and in a format that all

interested parties understand. Monitoring and logging tools like

Honeybadger, Honeycomb, or LogDNA can help significantly —

and there are CircleCI orbs that let you quickly integrate them with

your pipeline.

When you’re hosting in a cloud environment, make sure to check

the monitoring tools of that environment. Azure has Application

Insights, and AWS has CloudWatch Application Insights. Put

them to good use. They can track malicious login attempts,

unauthorized access, and errors coming from your application.

Third-party tools often add value by making it easier to get started,

making monitoring accessible for other teams, generating reports,

and monitoring additional metrics.

https://www.splunk.com/
https://www.paloaltonetworks.com/prisma/cloud
https://www.honeybadger.io/
https://www.honeycomb.io/
https://logdna.com/

14Vulnerability Management and DevSecOps with CI/CD

Patching software
It’s important to patch your software as soon as possible when

your tools report a vulnerability. Unfortunately, updates may break

software, and that includes updates from open source projects

and third-party vendors.

To limit any risks from patching, be sure to follow sound

development practices in your patching process, including

DevOps principles such as automated unit testing and integration
testing. Integration tests, especially, allow you to patch software

with confidence that the fix is not causing additional problems.

Automating integration tests will also significantly reduce human

efforts on releasing a patch. If you're sharing standardized assets

between teams, you'll be sure that all teams get the update.

https://circleci.com/resources/software-testing-devops-teams/
https://circleci.com/resources/software-testing-devops-teams/

15Vulnerability Management and DevSecOps with CI/CD

The next level:
CircleCI orbs

If you’re using CircleCI for your CI/CD pipelines, you should

consider using CircleCI orbs. Orbs are reusable, shareable,

open source packages of CircleCI configuration that enable the

immediate integration of many third-party services, including

valuable security tools such as scanner services. CircleCI offers

many vulnerability scanning orbs that make it easy to integrate

vulnerability scanning into your pipeline with minimal time spent

on setup. With orbs, you get an out-of-the-box solution for securing

your pipeline.

https://circleci.com/orbs/

16Vulnerability Management and DevSecOps with CI/CD

You'll find scanners for the tools we already mentioned like Alcide,

Snyk, and Stackhawk, and there are more scanners like:

• Anchore (for images)

• AWS Parameter Store (for managing and loading
environment secrets)

• Checkmarx (for static and interactive application security
testing)

• Probely (for scanning your web application for
vulnerabilities)

• Secret Hub (to provision passwords and keys to
applications)

• SonarCloud (for continuous code quality scans)

Other orbs for development on web applications like Docker,

Kubernetes, Heroku, AWS, Azure, and Google Cloud are also
available.

If you’d like to use a security scanner that doesn’t yet have an orb,

you can create one and push it to the open source CircleCI Orb

Registry to contribute to the community.

https://circleci.com/orbs/registry/orb/anchore/anchore-engine
https://circleci.com/orbs/registry/orb/factorypal/aws-parameter-store
https://circleci.com/developer/orbs/orb/checkmarx-ts/cxflow
https://circleci.com/orbs/registry/orb/probely/security-scan
https://circleci.com/developer/orbs/orb/secrethub/cli
https://circleci.com/developer/orbs/orb/sonarsource/sonarcloud
https://circleci.com/developer/orbs
https://circleci.com/developer/orbs
https://circleci.com/docs/2.0/orb-author/

17Vulnerability Management and DevSecOps with CI/CD

Wrapping up The DevSecOps approach to incorporating security awareness into

DevOps practices offers a relatively painless way to leverage CI/

CD to add vulnerability scanning and management to your existing

deployment pipelines.

You can build this up over time by first introducing basic scanning

to get development teams used to DevSecOps, then increasing the

number and type of vulnerabilities you scan for over time.

Vulnerability management is just one area where CI/CD acts as a

force multiplier for development teams. Building resilient systems

allows teams to ship high-quality code in less time with lower risk.

By putting your CI pipeline to work for you, you’ve got access to a

key differentiator and leverage point for your company.

If you’re ready to give it a try, you can create a complete

DevSecOps pipeline on CircleCI.

Get started for free by creating an account at https://circleci.com.

https://circleci.com/

